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We consider Markov chains with fast and slow variables and show that in a suitable
scaling limit, the dynamics becomes deterministic, yet is far away from the standard
mean field approximation. This new limit is an instance of self-induced stochastic
resonance which arises due to matching between a rare event timescale on the one hand
and the natural timescale separation in the underlying problem on the other. Here it is
illustrated on a model of a molecular motor, where it is shown to explain the regularity
of the motor gait observed in some experiments.
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1. INTRODUCTION

Consider a Markov chain whose generator is

(L f )(x) =
J∑

j=1

λ j (x)( f (x + e j ) − f (x)), (1)

where x, e j ∈ Z
n , and let x(t) be a sample path of the process with this generator.

If we make the jumps smaller by a factor of ε < 1 and simultaneously speed up
the evolution by a factor of ε−1, we obtain a process zε(t) whose dynamics is
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governed by the generator

(Lε f )(zε) = ε−1
J∑

j=1

λ̄ j (zε)( f (zε + εe j ) − f (zε)). (2)

where λ̄ j (zε) = λ j (zε/ε). This type of scaling is suggested by various applications,
in particular chemical kinetics. The dynamics of zε is well-understood in two
limits. First consider the Markov chain on a finite time interval [0, T ], T > 0 but
fixed, and let ε → 0. Then Kurtz’ Theorem(17) asserts that the sample paths of the
Markov chain converge uniformly to z(t), where

ż(t) =
J∑

j=1

λ j (z(t))e j . (3)

This Law-of-Large-Numbers-type result is referred to as the mean field limit.
If instead of fixing T , we allow T → ∞ as ε → 0 so that ε log T > 0, i.e.

look at 3 on exponentially long time intervals, then something different occurs:
large deviations control the dynamics. (8,17) The system spends all of its time near
the attractors of (3) and, on exponentially long timescales, jumps amongst them.
For example, if we assume that the limiting Eq. (3) has P stable fixed points x p,
p = 1, . . . , P , which attract any initial condition of (3), then in the long-time limit
the system effectively becomes a P-state Markov chain on these fixed points with
rates typically given by

kε
p,p′ = νε

p,p′ exp(−Ip,p′/ε) (4)

where Ip,p′ is the rate function of large deviation for the hopping event x p → x p′

and νε
p,p′ is a prefactor which is independent of ε to leading order in ε.
We describe yet another case in this paper. Specifically, we consider a scenario

where the chain involves two groups of variables, one fast and one slow. Adding
this additional timescale can have significant effects: we show that the interplay
between the new timescale and the one associated with ε in (2) can (in a suitable
limit) lead to dynamics which is deterministic, yet radically different from (3).
It should also be stressed that this choice of scaling for a Markov chain is in no
way contrived: the authors analyze a specific example of this sort of system in the
context of chemical kinetics in Ref. 2, and in Sec. 3 below we present an example
of this type of scaling in a model of a molecular motor. The model we investigate
is related to those developed in Refs. 5, 6, 7, 12, 15; in particular it has been
shown numerically in Ref. 16 that stochastic models of this type display regular
behavior in certain parameter regimes (this may also explain some experimental
data: see Ref. 18).

The analysis of this paper is reminiscent of Refs. 1, 9, 10, 13. In those
works, the authors showed that in the case of an ordinary differential equation
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perturbed by white noise, the small noise perturbation can lead to nontrivial
yet coherent dynamics induced by the noise, a phenomena termed self-induced
stochastic resonance. The present paper can be thought of as an analogue to Ref. 10
for the case of Markov chains.

The plan of the paper is as follows: in Sec. 2 we will state Theorem 1
concerning the existence of a new scaling limit in the simplest setting which leads
to nontrivial deterministic dynamics in the solution. While simple, this setting
arises naturally in the context of molecular motors, as illustrated in Sec. 3. Several
generalizations are then suggested in Sec. 4. Finally, the appendix contains the
proof of Theorem 1.

2. A NEW SCALING LIMIT

Instead of (2), consider a Markov process on (x, y) ∈ εZ × εZ whose gener-
ator is

(Lα,ε f )(x, y)

= (εα)−1(λ+(x, y)( f (x + ε, y) − f (x, y)) + λ−(x, y)( f (x − ε, y) − f (x, y)))

+ ε−1(µ+(x, y)( f (x, y + ε) − f (x, y)) + µ−(x, y)( f (x, y − ε) − f (x, y))),

(5)

where α > 0 and ε > 0 are parameters and we make the following assumption:

Assumption 1. λ+(x, y) and λ−(x, y) are positive, smooth, and bounded func-
tions of (x, y) ∈ R × R.

In this new chain, the rates in the x-direction can be made much faster (by
choosing α small) than those in the y-direction. We investigate what happens when
ε → 0, α → 0 on specific sequences.

Letting ε → 0 at fixed α, we arrive at the mean field limit (i.e. the equivalent
of (3)):

{
ẋ = α−1 f (x, y)
ẏ = g(x, y).

(6)

where we have defined

f (x, y) = λ+(x, y) − λ−(x, y), g(x, y) = µ+(x, y) − µ−(x, y). (7)

If we now take α → 0, so that the timescale separation becomes large as well, (6)
becomes a singularly-perturbed ordinary differential equation, and we further
impose the following assumptions:
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Assumption 2. For each y ∈ R, there are exactly three points x−(y) < xs(y) <

x+(y) with

f (x−(y), y) = f (xs(y), y) = f (x+(y), y) = 0.

Furthermore, the curves S− = {(x, y) : x = x−(y)}, Ss = {(x, y) : x = xs(y)} and
S+ = {(x, y) : x = x+(y)} are smooth.
Assumption 3. The points x±(y) are locally attracting in the x-direction, and
xs(y) is locally repelling in the y direction, namely:

∂ f

∂x
(x±(y), y) < 0,

∂ f

∂x
(xs(y), y) > 0.

Assumption 4. G−(y) := g(x−(y), y) < 0, G+(y) := g(x+(y), y) > 0.

Assumptions 2–4 mean that if α � 1 in (6), there are three slow manifolds
for (6); by assumption 3 the outer two are attracting and the inner one is repelling
(see Fig. 1). Moreover, by assumption 4 the solutions of (6) move up on the right
slow manifold, and down on the left one. If we consider any initial condition
for (6), the trajectory is then as follows when α � 1 (see Fig. 1): the solution
moves rapidly on a O(α)-timescale to one or the other of the slow manifolds
without changing much in y (which manifold is chosen by determining which side
of xs(y) the initial condition lies on), then stays in a small neighborhood of the
slow manifold and moves along it following the limiting equation: (4)

ẏ = G+(y), x = x+(y) or ẏ = G−(y), x = x−(y). (8)
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Fig. 1. Schematic representation of the flow associated with a system (6) which satisfies Assump-
tions 2–4. The two attracting slow manifolds, S± are also shown.
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The presence of the noise in the Markov chain (5) may alter the picture
above. Specifically, if both α and ε are sent to zero on a sequence on which α

decays more quickly, the resulting speed-up in the x-direction may make the noise-
induced hopping events from S+ to S− or S− to S+ as fast as the deterministic
motion along the slow manifold S±. At fixed y, the hopping events from S− to S+
and S+ to S− are large deviation events arising on the timescales α exp(I−(y)/ε)
and α exp(I+(y)/ε), respectively, where I±(y) are the rate functions

I−(y) =
∫ xs (y)

x−(y)
log

(
λ−(x, y)

λ+(x, y)

)
dx (S− → S+),

(9)

I+(y) =
∫ xs (y)

x+(y)
log

(
λ−(x, y)

λ+(x, y)

)
dx (S+ → S−).

This suggests that an interesting interplay between the motion along S± and the
hoppings between these manifolds will arise in the distinguished limit when

ε → 0, α → 0, ε log α−1 → β, (10)

where β is a parameter to be specified below. If we choose a point y− with
I−(y−) = β, then α exp(I−(y−)/ε) → 1 in the distinguished limit (10); similarly,
if y+ is such that I+(y+) = β, then α exp(I+(y+)/ε) → 1 in the limit (10). Points
along S− (resp. S+) where I−(y) > β (resp. I+(y) > β) are points where the rate of
hopping toward S+ (resp. S−) is much slower than the motion along the manifold
(and hence jumps should not occur in the limit (10)). Conversely, points along S−
(resp. S+) where I−(y) < β (resp. I+(y) < β) are points where the rate of hopping
toward S+ (resp. S−) is much faster than the motion along the manifold (and hence
jumps should occur in the limit (10)). This may lead to a limit cycle under the
following additional assumption:

Assumption 5. I−(y) is monotone increasing in y and I+(y) is monotone de-
creasing in y; both functions are bounded from above and below; and their graphs
intersect, i.e.

0 < m− = miny I−(y) < M+ = maxy I+(y),

0 < m+ = miny I+(y) < M− = maxy I−(y).

We will denote by y� the (unique) point at which I−(y) and I+(y) intersect, and
their value at this point by βmax, i.e.

I+(y�) = I−(y�) = βmax.

We further define βmin = max(m−, m+) and note that βmin < βmax <

min(M−, M+) by construction.
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Assumption 5 means that as the system moves along either of the slow
manifolds, the activation energy it needs to jump across to the other decreases.
Additionally, the activation energy to go from S− to S+ is lower than the activation
energy to go from S+ to S− when y < y�, and conversely when y > y�. This
means that, if a jump occurs from S− to S+ (resp. S+ to S−) at a point y < y�

(resp. y > y�), the probability to jump back immediately from S+ to S− (resp. S−
to S+) will be very small.

We are now ready to state our main theorem. Assuming that βmin < β <

βmax, let y+ be the unique point such that I+(y+) = β, y− the point such that
I−(y−) = β, and define t± by

t− =
∫ y−

y+

dη

G−(η)
, t+ =

∫ y+

y−

dη

G+(η)
.

Define also (ξ (t), η(t)) for t > 0 as follows. For t ∈ [0, t−), η(t) is the solution to
the second equation in (8) with initial condition η(0) = y+ and ξ (t) = x−(η(t));
for t ∈ [t−, t+ + t−), η(t) is the solution to the first equation in (8) with initial
condition η(t−) = y− and ξ (t) = x+(η(t)); then extend (ξ (t), η(t)) by periodicity
with period t− + t+. Thus, (ξ (t), η(t)) is the periodic trajectory we obtain by
following S− from y+ to y−, jumping horizontally to S+, following S+ from y− to
y+, jumping back to S−, and repeating periodically.

We then have:

Theorem 1. Let (Xα,ε(t), Y α,ε(t)) be any realization of (5) with initial condition
(Xα,ε(0), Y α,ε(0)). Pick a β ∈ (βmin, βmax) and define α(ε) so that ε log(α(ε))−1 =
β. Then, under Assumptions 1–5, there exists a phase-shift t� ∈ [0, t− + t+) such
that for any h > 0 and any T > 0,

lim
ε→0

Px,y

{
sup

0≤t≤T

∣∣Y α(ε),ε(t) − η(t)
∣∣ > h

}
= 0,

lim
ε→0

Px,y

{∫ T

0

∣∣Xα(ε),ε(t) − ξ (t)
∣∣ dt > h

}
= 0, (11)

where the convergence is uniform with respect to initial conditions in any compact
subset of R

2.

Remark 1. The type of convergence is different for each component of the
stochastic process. As will be clear from the mechanics of the proof, unlike
Y α(ε),ε(t), which stays uniformly close to the limiting trajectory (ξ (t), η(t)) on
[0, T ], Xα(ε),ε(t) makes excursions O(1) away from the limiting trajectory many
times with probability one. In fact, because of these excursions, as ε → 0 the graph
of the process (Xα(ε),ε(t), Y α(ε),ε(t)) becomes dense in a finite region containing the
slow manifolds whose size depends on β but not on ε. Yet, the integral estimate for
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Xα(ε),ε(t) in (11) holds because these excursions away from the limiting trajectory
take no time in the limit.

Sketch of proof. The proof of Theorem 1 is somewhat long and technical, so
we defer it to the Appendix and simply give here the main ideas of the argument.

Since we are choosing a scaling limit where α = α(ε) = exp(−β/ε) � ε,
we expect to see many steps in the x-direction before we see any steps in the
y-direction. In fact, since we expect to wait O(ε) time between jumps in y, we
may ask: given that Y α(ε),ε(t) = y, which sites will Xα(ε),ε(t) visit in the interval
[t, t + O(ε)] (before the next jump in y occurs)? To answer this question, consider
the “y-fixed” process generated by

L̃ε
y f (x) = (α(ε)ε)−1(λ+(x, y)( f (x + ε) − f (x))

+ λ−(x, y)( f (x − ε) − f (x))) (12)

and let us focus on what happens to the left of Ss (the picture to the right is similar).
For any realization X ε

y(t) of (12), let

τ ε
x,y(x ′) = inf

{
t : X ε

y(t) = x ′ ≤ xs(y), X ε
y(0) = x < x ′} (13)

be the first exit time out of the interval (−∞, x ′]. It is a well-known result from
large deviation theory(17) that, as ε → 0, τ ε

x,y(x ′) converges towards a Poisson
process with intensity2

kε
y(x ′) � exp(−ε−1(I−(x ′, y) − β)), (14)

where

I−(x, y) =
∫ x

x−(y)
log

(
λ−(x ′, y)

λ+(x ′, y)

)
dx ′. (15)

(The extra factor β in (14) arises because of the presence of α(ε) = e−β/ε in (12).) If
y > y−, then by definition I−(xs(y), y) > β, so that as ε → 0, the probability that
X ε

y(t) crosses xs(y) on any time interval [t, t + O(ε)] tends to zero exponentially
fast in the limit as ε → 0 (however notice that, with probability 1 in this limit, X ε

y(t)
reaches every point to the left of xs(y) where I−(xs(y), y) ≤ β, thus preventing
strong convergence of the Xα(ε),ε(t) process). In contrast, if we choose y < y−,
then I−(xs(y), y) < β and X ε

y(t) crosses xs(y) with probability 1 in much less
than O(ε) time. Going back to the original process (Xα(ε),ε(t), Y α(ε),ε(t)), this
means that Xα(ε),ε(t) will cross xs(y) with probability 1 in the limit as ε → 0 if
Y α(ε),ε(t) < y−. In contrast, if Y α(ε),ε(t) > y−, Xα(ε),ε(t) will not cross xs(y) before
the next jump in y occurs.

2 f (ε) � g(ε) if log f (ε)/ log g(ε) → 1 as ε → 0.
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Now, to understand the motion when Y α(ε),ε(t) > y−, we can use another
estimate from large deviation theory about the y-fixed process. Consistent with
the property that a jump from S− to S+ across Ss is exponentially unlikely if
Y α(ε),ε(t) > y−, consider the equilibrium distribution νε

y(x) of the process L̃ε
y for

x < xs(y) with a reflecting boundary condition at x = xs(y). It has the property
that

νε
y(x) � e−ε−1 I−(x,y) as ε → 0 (16)

on any compact set which does not contain xs(y). Since α−1(ε) = eβ/ε 	 1, the
process Xα(ε),ε(t) will stay in this y-slice long enough that the occupation number
of each point will be close to that of νε

y(x), which, by (16), implies that Xα,ε(t)
will spend most of its time near x−(y) since I−(x−(y), y) = 0 but I−(x, y) > 0 if
x ≤ xs(y) and x 
= x−(y). This in turn allows us to approximate Y α(ε),ε(t) by the
restricted process Y ε

res(t) generated by
(
Lε

res f
)
(y) = ε−1(µ̃+(y)( f (y + ε) − f (y)) + µ̃−(y)( f (y − ε) − f (y))), (17)

where

µ̃±(y) = µ±(x−(y), y).

It is also clear that Y ε
res(t) converges strongly to the solution of

ẏ = G−(y) (18)

by Kurtz’ theorem (see Lemma 1 below). Thus, the solution of (18) allows one
to approximate that of Y α(ε),ε(t) before a jump from S− to S+ occurs when
Y α(ε),ε(t) = y−.

Since β < βmax by assumption, the process, once it crosses xs(y) from the
left, is very unlikely to cross back at the same value of y, so a similar scenario
starts over on the other side. Specifically, as long Y α(ε),ε(t) < y+, ẏ = G+(y)
will approximate Y α(ε),ε(t), and as soon as Y α(ε),ε(t) > y+, a jump from S+ to
S− occurs with probability one. At this point, everything repeats, leading to the
periodic motion as specified in Theorem 1.

3. A MOLECULAR MOTOR EXAMPLE

The new limiting behavior investigated in Sec. 2, or at least a slight modifi-
cation thereof, arises in a simplified model of a molecular motor. This model is a
spatial discretization of the type of Brownian ratchet models considered in Refs. 5,
15; viewed another way, it is a one-state Kolomeisky-Fisher model with no back-
ward steps. (6,7,12)

In this model, the molecular motor moves by steps along one-dimensional
filament referred to as the track. The motor drags behind it a massive cargo, which
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also moves by steps in the same direction as the motor. Here we show how the
coupling to a massive cargo can give rise to regular stepping of the motor in certain
parameter regimes, thereby explaining a phenomenon which has been observed in
numerical experiments. (16)

Let xM denote the position of a motor and xC the position of a cargo. We
assume that the motor is only allowed to take large steps along the one-dimensional
track and we nondimensionalize these steps to be of size unity, so that xM ∈ Z.
For the cargo, we take xC ∈ εZ and thus assume that the motion of the cargo is
nearly continuous. Finally, we assume that the rates of transition depend on xC

and xM , but only through the distance d = xM − xC . Thus, we model the motor
by the Markov chain whose generator is given by

(Lα,ε f )(xM , xC ) = (εα)−1
(
λε

+(d)( f (xM + 1, xC ) − f (xM , xC ))
)

+ ε−1µ+(d)( f (xM , xC + ε) − f (xM , xC ))

+ ε−1µ−(d)( f (xM , xC − ε) − f (xM , xC )), (19)

where we define

λε
+(d) = e−d/ε,

µ+(d) = (κ + γ )d, (20)

µ−(d) = γ d.

This model is somewhat different than the one studied in Sec. 2, in that the size of
the steps that the motor takes is independent of ε, whereas the rate λε

+(d) at which
it takes these steps depends on ε (which is consistent with Kolomeisky-Fisher’s
model (6,7,12)). We will now show that, in the limit (10) when ε log α−1 → β > 0, a
regular limiting behavior emerges by a mechanism similar to the one investigated
in Sec. 2.

Letting α → 0 corresponds physically to making the cargo slower than the
motor, which it typically is because it is much heavier than the motor. In this limit,
the motion of the cargo becomes continuous and governed by

ẋC = −κ(xC − xM ). (21)

In this equation, xM would be fixed if we would neglect the effect of the noise
in (19) which makes the motor jump along the track. But in the limit (10), xM is
not fixed: there is a timescale matching similar to that investigated in Sec. 2 in
which the rare hopping events of the motor along the track become as fast as the
motion of the cargo. For any fixed separation d, the timescale of the jumps of the
motor is αed/ε. On the other hand, the cargo moves on the O(1)-timescale via (21),
so we expect that as long as d > β, the motor will almost certainly not jump, and
as soon as d = β, it will jump.



84 DeVille and Vanden-Eijnden

1.0372 1.0374 1.0376 1.0378 1.038

x 10
4

5286

5287

5288

5289

5290

5291

5292

t

ca
rg

o,
 m

ot
or

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

time between jumps

nu
m

be
r

Fig. 2. One realization of (20) when ε = 10−2, α = 10−6, κ = 1.0, γ = 0.2. The upper panel contains
a trace of the trajectories; the curve represents the position of the cargo, and the dots represent the
position of the motor. The lower panel is a histogram of the time between successive jumps of the
motor.

This prediction is confirmed by the numerical results presented in Fig. 2.
They show that the jumping times of the motor are fairly regular as expected.
Furthermore, the theory predicts that in the limit ε log α−1 → β, they should arise
when d = β and the histogram Fig. 2 should become a delta function. The mean
and standard deviation of the jump times are

µ = 1.959, σ = 0.228,

giving a coefficient of variation of 11.7%. Note, moreover, that for the parameter
values used, we have

β = ε log α−1 = 0.1382,

and thus the theory predicts that the cargo relaxes until the separation is d =
0.1382, at which time the motor jumps forward one unit making the separation
d = 1.1382. From (21), the time of relaxation tR it takes for xC to relax from
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xC = xM + 1.1382 to xC = xM + 0.1382 is tR = 2.1085, compared to µ = 1.959
observed in the numerical experiments. Thus the numerically computed mean has
a relative error of about 7% compared to the theoretically calculated value.

4. CONCLUDING REMARKS

To conclude, let us note that there are various ways in which the theory
above can be extended. One can consider the notion of bifurcation in this context.
Specifically, we can investigate what happens if, as we take the limit ε, α(ε) → 0,
we also take m− → 0. This defines a one-parameter family of systems where the
minimal activation energy is going to zero in the limit as well. One example of
this was studied in Ref. 2 (see also Ref. 1 for an analogous study in the context of
SDE). We consider this question in more generality in a separate paper. (3)

It would also be interesting to consider what happens when the assumptions
in Sec. 2 are somewhat relaxed. For instance, interesting new phenomena may arise
when there are more than two slow manifolds, or when the fast x-variable and the
y-variable are multidimensional. In these situations, more complicated behaviors
than the simple limit cycle found in Sec. 2 may arise. These situations can be
investigated along the same lines as what was done in the proof of Theorem 1. We
shall leave these problems for future investigations.

APPENDIX: PROOF OF THEOREM 1

We define Lε
y = α L̃ε

y , namely

Lε
y f (x) = ε−1(λ+(x, y)( f (x + ε) − f (x)) + λ−(x, y)( f (x − ε) − f (x))),

(22)
where L̃ε

y is defined in (12). Recall the definition of I−(x ′, y) in (15). Fix y and let
X ε

y(t) be any realization of (22) with X ε
y(0) = x , and then define

τesc(x, x ′, y) = inf
t>0

{
t : X ε

y(t) > x ′} .

For ν > 0 define xν(y) to be the unique point in (x−(y), xs(y)) with

I−(xν(y), y) = β + ν,

if such a point exists. (It is unique because the integrand in (15) is positive for
x ∈ (x−(y), xs(y)), and it exists if ν is not too large.) Also define yν so that
xν(yν) = xs(y). (This is unique by Assumption 5.)

Define Bq (x) = {z ∈ R : |z − x | < q}. Choose δ > 0, δ′ < δ/2. Let X ε
y(t)

be any realization of (22) with X ε
y(0) = x , and define the stopping times

τk(x, x ′, y, δ, δ′) by τ−1(x, x ′, y, δ, δ′) = 0 and

τ2 j (x, x ′, y, δ, δ′) = inf
t>τ2 j−1

{
t : X ε

y(t) ∈ Bδ′(x−(y)) or X ε
y(t) > x ′}, (23)
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τ2 j+1(x, x ′, y, δ, δ′) = inf
t>τ2 j

{
t : X ε

y(t) 
∈ Bδ(x−(y))
}
. (24)

Further define

a j = τ2 j+1 − τ2 j , b j = τ2 j − τ2 j−1. (25)

We will use four lemmas which are very close to results stated in
Ref. 17.

Lemma 1. (Kurtz’ Theorem) Consider the Markov process with generator

Lε f (x) =
k∑

i=1

ε−1λi (x)( f (x + εei ) − f (x)),

where ei ∈ Z
d and λi : � ⊂ R

d → R are uniformly bounded and Lipschitz contin-
uous. Let xε(t) be any realization of this MC, and let x0(t) solve

d

dt
x0(t) =

k∑

i=1

λi (x
0(t))ei .

For any finite T , and for δ positive and sufficiently small, there exist C1, C2 > 0
such that for all ε > 0, if xε(0) = x0(0),

P

(
sup

t∈[0,T ]

∣∣xε(t) − x0(t)
∣∣ δ

)
≤ C1e−C2δ

2/ε.

Further, C1, C2 only depend on the rates λi as follows: if we assume that there
exist λ and M such that

sup
i,x∈�

λi (x) < λ, and |λi (x) − λi (y)| < M |x − y| (26)

for all x, y ∈ �, then C1, C2 need depend only on λ and M.

Lemma 2. For any δ and ε positive but sufficiently small and X ε
y(t) any realiza-

tion of (22) with X ε
y(0) ∈ Bδ(x−(y)), we have

P(ε log τesc(x, x ′, y) < I−(x ′, y) − 3δ) ≤ 2e−δ/ε.

Lemma 3. For any δ and ε positive but sufficiently small, δ′ < δ/2, there is a
T = T (δ) < ∞ such that for all k ∈ Z

+,

P(a j > kT |X ε
y(τ2 j (x, x ′, y, δ, δ′)) < x ′) ≤ (1 − exp(−Caδ/ε))k,

P(b j > kT |X ε
y(τ2 j−1(x, x ′, y, δ, δ′)) < x ′) ≤ exp(−kCbδ

2/ε).
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The constants Ca, Cb can be chosen independently of y ∈ K (again, they depend
only on uniform bounds as in (26).)

Lemma 4. For all j odd, any positive δ, and ε positive but sufficiently small, x

e−(I−(x ′,y)+δ)/ε ≤ P
(
X ε

y(τ j+1)x ′|X ε
y(τ j ) < x ′) ≤ e−(I−(x ′,y)−δ)/ε.

We will not prove these lemmas; in fact, they are slightly modified versions
of results contained in Ref. 17. The arguments in Ref. 17 are demonstrated without
the parametric dependence on y, but one can check that all of the constants in
the lemmas depend only on the bounds as in (26), and thus these lemmas apply
uniformly on any compact set K . For reference, Lemmas 1,3,4 correspond to
Theorem 5.3, Lemma 6.32, and Lemma 6.36 of Ref. 17. Lemma 2 is not stated as
such in Ref. 17 but is part of the proof of Theorem 6.17 (see p. 154).

Proof of Theorem 1. Throughout the proof, we will represent arbitrary positive
constants by C1, C2, etc. Let Tα be any random variable with the property that

1 − e−C1αt ≤ P(Tα ≤ t) ≤ 1 − e−C2αt . (27)

for some C2 < C1.
Now assume that x < x2δ(y). Define X0

y(t) with X0
y(0) = x and

d

dt
X0

y(t) = λ+
(
X0

y, y
) − λ−

(
X0

y, y
)
. (28)

For all δ′ > 0, there exists a finite-time trajectory for (28) for which

X0
y(0) = x, X0

y(T f) = x−(y) + δ′.

Then we have

P
(
X ε

y(t) 
∈ Bδ(x−(y)) for all t ∈ [0, T f]
) ≤ C3 exp(−δ2/4ε). (29)

To see this, note that X0
y(T f) ∈ Bδ′(x−(y)), and X0

y(T f) 
∈ Bδ(x−(y)) implies
∣∣X ε

y(T f) − X0
y(T f)

∣∣δ/2,

and apply Lemma 1. Now, apply Lemma 2 with x ∈ Bδ(x−(y)) and x ′ = x4δ(y).
By the Markov property, if X ε

y(t) visits Bδ(x−(y)) before escaping to x4δ(y),
then τesc(x, x4δ(y), y) is bounded as in Lemma 2. Thus, for any x < x2δ(y) and
T > 0,

P
(
τ (x, x4δ(y), y) < T e(β+δ)/ε

) ≤ 2e−δ/ε + C3e−δ2/4ε ≤ C4e−δ2/4ε. (30)

By the definition of Tα ,

P
(
Tα > T e(β+δ)/ε

) ≤ C5e−C6δ/ε. (31)
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Combining (30) and (31) gives

P(τ (x, x4δ(y), y) < Tα) ≤ C4e−δ2/4ε + C5e−C6δ/ε < C7e−δ2/4ε, (32)

if δ is small enough. The probability of an escape to the right of x4δ(y) in less than
time Tα is exponentially small.

We now compute the probability of starting in any slice with initial condition
less than x2δ(y). Again, x ∈ Bδ(x−(y)) implies that

P
(
τ (x, x2δ(y), y) < T e(β+δ)/ε

) ≤ 2e−δ/3ε. (33)

The probability of reaching x2δ(y) even once before Tα is exponentially small, and
therefore for any realization X ε

y(t) of (22) with X ε
y(0) ∈ Bδ(x−(y)),

P
(
X ε

y(Tα) ≥ x2δ(y)
) ≤ 2e−δ/3ε. (34)

Combining (29) with (34) gives

P
(
X ε

y(Tα) ≥ x2δ(y)
) ≤ 2e−δ/3ε + C7e−δ2/4ε (35)

for any initial condition X ε
y(0) < x2δ(y).

Summarizing what we have shown so far: consider any realization X ε
y(t)

of (22) with y > y4δ , and let Tα satisfy (27). Then by (30) and (35), for any fixed
δ > 0, there exists C8 > 0 with

P(τesc(x, x4δ(y), y) < Tα) + P
(
X ε

y(Tα) > x2δ(y)
) ≤ C8e−δ2/4ε. (36)

Consider the process (Xα,ε(αt), Y α,ε(αt)) with generator Lε
y and define the

stopping times ui as

u0 = 0, ui+1 = inf
t>ui

{t : Y α,ε(αt) 
= Y α,ε(αui )}.

Since µ±(x, y) are bounded above on any compact set K , each difference (αui+1 −
αui ) is distributed as Tα in (27). Further define the random variable N by

N = inf
i

{Y α,ε(αui ) < y4δ}. (37)

Since x4δ(y) < xs(y) for all y > y4δ , it follows that

P(Xα,ε(αt) > xs(Y α,ε(αt)) for any t ∈ [0, αuN ]) ≤ NC8e−δ2/4ε. (38)

We will show below that N = O(ε−1) for ε → 0; the probability in (38) goes to
zero as long as we can control the growth of N . To establish that N = O(ε−1)
as ε → 0, we will show that the process (Xα,ε(αt), Y α,ε(αt)) stays in a small
neighborhood of the manifold S−. Recalling the definitions of a j and b j in (25),
the amount of time we spend outside of Bδ(x−(y)) is bounded above by

∑
b j .

Lemma 3 gives

P(b j ≥ kT ) ≤ e−kC9δ
2/ε.
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Choosing T as in Lemma 3, we compute

E(b j ) ≤ T +
∞∑

k=1

(k + 1)T P(kT ≤ b j ≤ (k + 1)T )

≤ T +
∞∑

k=1

(k + 1)T e−kC9δ
2/ε

≤ T (1 + 2e−C9δ
2/ε).

Using the same argument as that establishing (29) gives

P(a j < 3T ) ≤ e−C10δ
2/ε,

and thus

E(a j )3T (1 − e−C10δ
2/ε),

by the Markov inequality. We write

E(a j ) = A, E(b j ) = B,

and from above A > 2B. It is a standard result (e.g. see p. 14 of Ref. 17) that

P

⎛

⎝
J∑

j=1

a j <

J∑

j=1

b j

⎞

⎠ ≤ P

⎛

⎝J−1
J∑

j=1

a j < 2A/3 and J−1
J∑

j=1

b j > 4B/3

⎞

⎠

≤ exp(−C11 J ). (39)

Now, define

J = inf{ j : τ2 j > min(τesc(x, x4δ(y), y), Tα)}. (40)

Then

P(J ≤ J ) ≤
J∑

i=1

P(Xα,ε(τ2i ) ≥ x4δ(y) and Xα,ε(τ2i−1) < x4δ(y)) + P(Tα ≤ τ2J )

≤ J e−(β+3δ)/ε + e−C12J α.

Choosing

J = e(β+2δ)/ε

gives

P(J ≤ e(β+2δ)/ε) ≤ 2e−δ/ε,
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so that we can take J = e(β+2δ)/ε in (39) with probability exponentially close to
one, and so then

P

⎛

⎝
J∑

j=1

a j <

J∑

j=1

b j

⎞

⎠ ≤ 3e−δ/ε.

Specifically, the process spends at least half of the total time inside Bδ′(x−(y)),
and no more than half outside of Bδ(x−(y)). For any realization X ε

y(t), we denote
G as

G = {
k : X ε

y(t) 
∈ B2δ(x−(y)) for some t ∈ [τ2k, τ2k+1]
}
,

and then the proportion of time the process X ε
y(t) spends outside B2δ(x−(y)) before

escaping to the right at x4δ(y), which we denote T2δ(x, x4δ(y), y), is bounded above
by

T2δ(x, x4δ(y), y) ≤
∑

k∈G

bk .

Again using the arguments establishing (29),

p := P
(
X ε

y(t) 
∈ B2δ(x−(y)) for some t ∈ [τ2k, τ2k+1]
) ≤ C13e−C14δ

2/ε, (41)

so that

T2δ(x, x4δ(y), y) ≤ #(G)/J .

If we take J Bernoulli trials, each with success p, the mean number of successes
is

pJ = JC13e−C14δ
2/ε.

By similar arguments to those establishing (39),

P(T2δ(x, x4δ(y), y) > 2C13e−C14δ
2/ε) ≤ e−C15J , (42)

and again J is exponentially large. In summary, the probability that the pro-
cess X ε

y(t) spends more than an exponentially small amount of time outside of
B2δ(x−(y)) is itself exponentially small.

To complete the argument, we ignore for now every realization for which the
process spends a larger ratio of time than 2C13e−C14δ

2/ε outside of B2δ(x−(y)). For
all other realizations,

P
(
X ε

y(ui ) 
∈ B2δ(x−(y))
) ≤ 2C13e−C14δ

2/ε, for each i.

Recalling the definition of N as in (37),

P
(
X ε

y(ui ) 
∈ B2δ(x−(y)) for any i
) ≤ 2NC13e−C14δ

2/ε.
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As long as N is not exponentially large, then this quantity can be made as small
as necessary. We again ignore all realizations for which X ε

y(ui ) 
∈ B2δ(x−(y)) for
any i (again this removes only an exponentially-small set of realizations).

Thus in all that follows we focus only on those realizations with the property
that for each i , X ε

y(ui ) ∈ B2δ(x−(y)).
We are now equipped to show the estimates (11). We define

µ
sup,δ
± (y) = sup

|x−x−(y)|<2δ

µ±(x, y), µ
inf,δ
± (y) = inf

|x−x−(y)|<2δ
µ±(x, y).

We further define
(
Lε,δ

sup f
)
(x) = ε−1

(
µ

sup,δ
+ (y)( f (x + ε) − f (x)) + µ

inf,δ
− (y)( f (x − ε) − f (x))

)
,

(
Lε,δ

inf f
)
(x) = ε−1

(
µ

inf,δ
+ (y)( f (x + ε) − f (x)) + µ

sup,δ
− (y)( f (x − ε) − f (x))

)
,

and recall that Lε
res is defined in (17). We define Y ε,δ

sup(t) (resp. Y ε,δ

inf (t), Y ε
res(t)) to

be realizations of the process generated by Lε,δ
sup (resp. Lε,δ

inf, Lε
res) with Y ε,δ

sup(0) =
Y ε,δ

inf (0) = Y ε
res(0) = Y α,ε(0). It is clear that for any y∗,

P(Y α,ε(t) < y∗) ≤ P
(
Y ε,δ

inf (t) < y∗),

P(Y α,ε(t) > y∗) ≤ P
(
Y ε,δ

sup(t) > y∗).

Define y(t) to solve

ẏ = G−(y), y(0) = Y α,ε(0). (43)

By applying Lemma 1, for any ζ > 0, T > 0,

lim
ε→0

P

(
sup

t∈[0,T ]

∣∣Y ε
res(t) − y(t)

∣∣ > ζ
)

= 0.

Since µ±(x, y) are smooth,

lim
δ→0

Lε,δ
sup = Lε

res, lim
δ→0

Lε,δ

inf = Lε
res

as operators on the space of functions defined on εZ. From the Trotter-Kato
theorem, (14) this means that for any f : εZ → R,

lim
δ→0

sup
t∈[0,T ]

{
E

(
f (Y ε,δ

inf (t))|Y ε,δ

inf (0) = y
) − E

(
f (Y ε

res(t))|Y ε
res(0) = y

)} = 0,

lim
δ→0

sup
t∈[0,T ]

{
E

(
f (Y ε,δ

sup(t))|Y ε,δ
sup(0) = y

) − E
(

f (Y ε
res(t))|Y ε

res(0) = y
)} = 0. (44)

Define

t1 =
∫ Y α,ε(0)

y−

dη

G−(η)
,
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and choose any t∗ ∈ [0, t1]. Let y(t) be the solution of (43) with y(0) = Y α,ε(0),
and denote y∗ = y(t∗). By Lemma 1, for any κ > 0, θ > 0 there is an ε0 > 0 such
that ε < ε0 implies

P
(
Y ε

res(t∗) ∈ [y∗ − θ, y∗ + θ ]
)

> 1 − κ.

Moreover, using (44) with f = 1[y∗ − θ, y∗ + θ ], for any ζ > 0, there exists a
δ0 > 0 such that δ < δ0 implies

P
(
Y ε,δ

sup(t∗) ∈ [y∗ − θ, y∗ + θ ]
)

> 1 − κ − ζ,

P
(
Y ε,δ

inf (t∗) ∈ [y∗ − θ, y∗ + θ ]
)

> 1 − κ − ζ.

From the estimate on Y ε,δ
sup(t),

P(Y α,ε(t∗) < y∗ + θ ) > 1 − κ − ζ,

and from the estimate on Y ε,δ

inf (t),

P(Y α,ε(t∗) > y∗ − θ ) > 1 − κ − ζ.

Define ε(δ) to be the largest ε for which (30), (32), (35), (36) hold for any fixed δ.
(Since these estimates hold for ε and δ sufficiently small, we can choose ε(δ) for
each δ, and moreover ε(δ) → 0 as δ → 0.) Thus for any θ > 0,

lim
δ→0

∈=∈(δ)

α=α(∈)

P
(∣∣Y α,ε(t∗) − y∗∣∣ > θ

) = 0. (45)

We deduce that N as defined in (37) blows up like ε−1 as ε → 0. Choose any
initial conditions Xα,ε(0), Y α,ε(0) with Xα,ε(0) < xs(Y α,ε(0)), and again consider
y(t) as in (43). Combining (45) with the fact that X ε

y(t) spends an exponentially
small amount of time outside of B2δ(x−(y)) for any fixed δ, and that N = O(ε−1),
establishes (11) for all t ∈ [0, t1]. The process stays near the slow manifold S−
for almost all time, and in fact Y α,ε(t) is pathwise convergent to the underlying
deterministic slow motion on the manifold S−.

Now, assume that at some t > 0, Y α,ε(t) = y < y−. Since

I−(y) = I−(xs(y), y) < β,

then

lim
ε→0

ε log τesc(x−(y), xs(y), y) < β, (46)

and thus τesc(x−(y), xs(y), y)) � α−1 for ε small enough. From this we can con-
clude that in the limit, if the process Xα,ε(t), Y α,ε(t) ever goes below y−, then
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it jumps across Ss into a neighborhood of S+ with probability one. Arguments
similar to those above apply for the process near S+; we obtain pathwise conver-
gence for the process near S+. From this we get the periodic orbit described in
Sec. 2. Where we enter this periodic orbit depends on the initial condition, and
this determines the phase-shift t�. �
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